Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 196: 106748, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471594

RESUMO

Lung cancer is one of the most common causes of high mortality worldwide. Current treatment strategies, e.g., surgery, radiotherapy, chemotherapy, and immunotherapy, insufficiently affect the overall outcome. In this study, we used curcumin as a natural photosensitizer in photodynamic therapy and encapsulated it in liposomes consisting of stabilizing tetraether lipids aiming for a pulmonary drug delivery system against lung cancer. The liposomes with either hydrolyzed glycerol-dialkyl-glycerol tetraether (hGDGT) in different ratios or hydrolyzed glycerol-dialkyl-nonitol tetraether (hGDNT) were prepared by dual centrifugation (DC), an innovative method for liposome preparation. The liposomes' physicochemical characteristics before and after nebulization and other nebulization characteristics confirmed their suitability. Morphological characterization using atomic force and transmission electron microscopy showed proper vesicular structures indicative of liposomes. Qualitative and quantitative uptake of the curcumin-loaded liposomes in lung adenocarcinoma (A549) cells was visualized and proven. Phototoxic effects of the liposomes were detected on A549 cells, showing decreased cell viability. The generation of reactive oxygen species required for PDT and disruption of mitochondrial membrane potential were confirmed. Moreover, the chorioallantoic membrane (CAM) model was used to further evaluate biocompatibility and photodynamic efficacy in a 3D cell culture context. Photodynamic efficacy was assessed by PET/CT after nebulization of the liposomes onto the xenografted tumors on the CAM with subsequent irradiation. The physicochemical properties and the efficacy of tetraether lipid liposomes encapsulating curcumin, especially liposomes containing hGDNT, in 2D and 3D cell cultures seem promising for future PDT usage against lung cancer.

2.
Biomater Adv ; 159: 213823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460353

RESUMO

Lung cancer, one of the most common causes of high mortality worldwide, still lacks appropriate and convenient treatment options. Photodynamic therapy (PDT) has shown promising results against cancer, especially in recent years. However, pulmonary drug delivery of the predominantly hydrophobic photosensitizers still represents a significant obstacle. Nebulizing DPPC/Cholesterol liposomes loaded with the photosensitizer curcumin via a vibrating mesh nebulizer might overcome current restrictions. In this study, the liposomes were prepared by conventional thin-film hydration and two other methods based on dual centrifugation. The liposomes' physicochemical properties were determined before and after nebulization, showing that liposomes do not undergo any changes. However, morphological characterization of the differently prepared liposomes revealed structural differences between the methods in terms of lamellarity. Internalization of curcumin in lung adenocarcinoma (A549) cells was visualized and quantified. The generation of reactive oxygen species because of the photoreaction was also proven. The photodynamic efficacy of the liposomal formulations was tested against A549 cells. They revealed different phototoxic responses at different radiant exposures. Furthermore, the photodynamic efficacy was investigated after nebulizing curcumin-loaded liposomes onto xenografted tumors on the CAM, followed by irradiation, and evaluated using positron emission tomography/computed tomography and histological analysis. A decrease in tumor metabolism could be observed. Based on the efficacy of curcumin-loaded liposomes in 2D and 3D models, liposomes, especially with prior film formation, can be considered a promising approach for PDT against lung cancer.


Assuntos
Curcumina , Neoplasias Pulmonares , Humanos , Lipossomos/uso terapêutico , Curcumina/farmacologia , Curcumina/uso terapêutico , Sistemas de Liberação de Medicamentos , Nebulizadores e Vaporizadores , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia
3.
ACS Appl Bio Mater ; 6(12): 5502-5514, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38016693

RESUMO

Natural photosensitizers, such as curcumin or parietin, play a vital role in photodynamic therapy (PDT), causing a light-mediated reaction that kills cancer cells. PDT is a promising treatment option for glioblastoma, especially when combined with nanoscale drug delivery systems. The curcumin- or parietin-loaded lipid nanoparticles were prepared via dual asymmetric centrifugation and subsequently characterized through physicochemical analyses including dynamic light scattering, laser Doppler velocimetry, and atomic force microscopy. The combination of PDT and lipid nanoparticles has been evaluated in vitro regarding uptake, safety, and efficacy. The extensive and well-vascularized chorioallantois membrane (CAM) of fertilized hen's eggs offers an optimal platform for three-dimensional cell culture, which has been used in this study to evaluate the photodynamic efficacy of lipid nanoparticles against glioblastoma cells. In contrast to other animal models, the CAM model lacks a mature immune system in an early stage, facilitating the growth of xenografts without rejection. Treatment of xenografted U87 glioblastoma cells on CAM was performed to assess the effects on tumor viability, growth, and angiogenesis. The xenografts and the surrounding blood vessels were targeted through topical application, and the effects of photodynamic therapy have been confirmed microscopically and via positron emission tomography and X-ray computed tomography. Finally, the excised xenografts embedded in the CAM were analyzed histologically by hematoxylin and eosin and KI67 staining.


Assuntos
Curcumina , Glioblastoma , Fotoquimioterapia , Humanos , Animais , Feminino , Fotoquimioterapia/métodos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Curcumina/farmacologia , Curcumina/uso terapêutico , Galinhas , Linhagem Celular Tumoral
4.
Pharmaceutics ; 15(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37896172

RESUMO

Next to alcohol and tobacco abuse, infection with human papillomaviruses (HPVs) is a major risk factor for developing head and neck squamous cell carcinomas (HNSCCs), leading to 350,000 casualties worldwide each year. Limited therapy options and drug resistance raise the urge for alternative methods such as photodynamic therapy (PDT), a minimally invasive procedure used to treat HNSCC and other cancers. We prepared lipid-coated polymeric nanoparticles encapsulating curcumin as the photosensitizer (CUR-LCNPs). The prepared CUR-LCNPs were in the nanometer range (153.37 ± 1.58 nm) and showed an encapsulation efficiency of 92.69 ± 0.03%. Proper lipid coating was visualized using atomic force microscopy (AFM). The CUR-LCNPs were tested in three HPVpos and three HPVneg HNSCC lines regarding their uptake capabilities and in vitro cell killing capacity, revealing a variable but highly significant tumor cell inhibiting effect in all tested HNSCC cell lines. No significant differences were detected between the HPVpos and HPVneg HNSCC groups (mean IC50: (9.34 ± 4.73 µmol/L vs. 6.88 ± 1.03 µmol/L), suggesting CUR-LCNPs/PDT to be a promising therapeutic option for HNSCC patients independent of their HPV status.

5.
Pharmaceutics ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276492

RESUMO

Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.

6.
Drug Deliv ; 29(1): 2072-2085, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35848469

RESUMO

Hypoxia, an oxygen-deprived condition of the tumor, is one of the major reasons for resistance to chemotherapy. Carbonic anhydrases are generally involved in pH homeostasis in normal conditions, but in solid tumors having a strong relation with hypoxia, the carbonic anhydrase IX (CA-IX) enzyme is overexpressed and results in an extracellular acidic environment. For most weakly basic anticancer drugs, including doxorubicin (Dox), the ionization in an acidic environment limits their cellular uptake, and consequently, the tumor exposure to the drug at sub-therapeutic concentration comes out as chemoresistance. Herein, a combined drug delivery system of liposomes and mesoporous silica nanoparticles (MSNPs) was developed for the co-delivery of the CA-IX enzyme inhibitor and Dox in hypoxic condition. The unique structure of MSNPs with higher surface area was utilized for higher drug loading and sustained release of Dox. Additionally, the biocompatible nature of liposomal coating as a second loading site for the CA-IX enzyme inhibitor has provided gatekeeping effects at pore opening to avoid premature drug release. Lipid coated MSNPs as a co-delivery system for Dox and the CA-IX inhibitor have synergistic cytotoxic effects against MDA-MB 231 breast cancer cells in hypoxic conditions. These findings assure the potential of this drug delivery system to overcome hypoxia-related chemoresistance.


Assuntos
Antineoplásicos , Neoplasias , Anidrase Carbônica IX , Inibidores da Anidrase Carbônica/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Humanos , Hipóxia/tratamento farmacológico , Neoplasias/tratamento farmacológico
7.
Pharmaceutics ; 13(9)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34575472

RESUMO

The immediate release of chemotherapeutics at the target site, along with no premature release in circulation is always challenging. The purpose of this study was to develop a stimuli responsive drug delivery system, composed of lipid supported mesoporous silica nanoparticles (MSNPs) for triggered drug release at the target site and simultaneously avoiding the premature release. MSNPs with a higher drug loading capacity and very slow release were designed so as to enhance release by FDA approved US-irradiation. Doxorubicin, as a model drug, and perfluoropentane (PFP) as a US responsive material, were entrapped in the porous structure of MSNPs. Lipid coating enhanced the cellular uptake and in addition provided a gatekeeping effect at the pore opening to reduce premature release. The mechanical and thermal effects of US induced the conversion of liquid PFP to a gaseous form that was able to rupture the lipid layer, resulting in triggered drug release. The prolonged stability profile and non-toxic behavior made them suitable candidate for the delivery of anticancer drugs. This smart system, with the abilities of better cellular uptake and higher cytotoxic effects on US-irradiation, would be a good addition to the applied side of chemotherapeutic advanced drug delivery systems.

8.
Eur J Pharm Biopharm ; 165: 31-40, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33962002

RESUMO

The exposure of cancer cells to subtherapeutic drug concentrations results in multidrug resistance (MDR). The uniqueness of mesoporous silica nanoparticles (MSNPs) with larger surface area for higher drug loading can solve the issue by delivering higher amounts of chemotherapeutics to the cancer cells. However, premature drug release and lower biocompatibility remain challenging. Lipid coating of MSNPs at the same time, can enhance the stability and biocompatibility of nanocarriers. Furthermore, the lipid coating can reduce the systemic drug release and deliver higher amounts to the tumor site. Herein, lipid coated MSNPs were prepared by utilizing cationic liposomes and further investigations were made. Our studies have shown the higher entrapment of doxorubicin (Dox) to MSNPs due to availability of porous structure. Lipid coating could provide a barrier to sustain the release of drug along with reduced premature leakage. In addition, the biocompatibility and enhanced interaction of cationic liposomes to cell membranes resulted in better cellular uptake. Lipid coated silica nanoparticles have shown higher cellular toxicity as compared to non-lipid coated particles. The increase in cytotoxicity with time supports the hypothesis of sustained release of drug from lipid coated MSNPs. We propose the Lip-Dox-MSNPs as an effective approach to treat cancer by delivering and maintaining effective concentration of drugs to the tumor site without systemic side effects.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Neoplasias/tratamento farmacológico , Antibióticos Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos , Nanopartículas/química , Neoplasias/patologia , Tamanho da Partícula , Porosidade , Dióxido de Silício/química , Propriedades de Superfície
9.
Int J Nanomedicine ; 16: 951-976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33603362

RESUMO

PURPOSE: Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), thereby melding the biomimetic properties of long-circulating vesicles as well as the mechanical advantages of the nanoparticles. The present study was aimed at the development of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers. METHODS: For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. Physicochemical and morphological characterizations were done using dynamic light scattering, laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The quantitative assessment of cell damage was determined using MTT and reactive oxygen species (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice. RESULTS AND CONCLUSION: The mean hydrodynamic diameter of the formulations was found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging from -12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo toxicity as compared to the free drugs and was evident from the serum biochemical profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system.


Assuntos
Lipídeos/química , Nanopartículas/química , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Lipossomos , Testes de Função Hepática , Mesoporfirinas/farmacologia , Mesoporfirinas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Neoplasias Ovarianas/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade Aguda
10.
ACS Appl Bio Mater ; 4(11): 7764-7768, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35006759

RESUMO

Solid tumors and metastasis rely on angiogenesis for sufficient supply as they grow, making antiangiogenic treatment a promising option in the combat of cancer. Testing of inhalants on the chorio-allantoic membrane offers a simple but precise method to assess the impact on angiogenesis. The in ovo testing method can be used to directly determine the effect of inhaled formulations solely or in the context of photodynamic therapy. In this study curcumin liposomes served as a model for testing of pulmonary application and revealed an excellent antiangiogenetic effect. This efficacy of a model inhalant illustrates the suitability of the method.


Assuntos
Alantoide , Morfogênese
11.
Int J Pharm ; 591: 119993, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33086089

RESUMO

P-glycoprotein (P-gp) associated multidrug resistance (MDR) represents a major failure in cancer treatment. The overexpression of P-gp is responsible for ATP-dependent efflux of drugs that decrease their intracellular accumulation. An effective downregulation of MDR1 gene using small interfering RNA (siRNA) is one of the safe and effective tools to overcome the P-gp triggered MDR. Therefore, the development of an efficient and non-toxic carrier system for siRNA delivery is a fundamental challenge for effective cancer treatment. Polyamidoamine (PAMAM) dendrimer has been used for efficient delivery of siRNA (dendriplexes) to the tumor cells but the associated toxicity problems render its use in biological applications. A non-covalent lipid modification (lipodendriplexes) is supposed to offer a promising strategy to overcome the demerits linked to the naked dendriplexes system. In the current study, we deliver siRNA, designed against MDR1 gene (si-MDR1), in colorectal carcinoma cells (Caco-2), having overexpression of P-gp, to check the role of MDR1 gene in tumor progression and multidrug resistance using two dimensional (2D) and three dimensional (3D) environment. Imatinib mesylate (IM), a P-gp substrate, was used as model drug. Our results revealed that the effective knockdown by lipodendriplexes system can significantly reduce the tumor cell migration in 2D (p < 0.001) and 3D (p < 0.001) cell cultures as compared to unmodified dendriplexes and si-Control groups. It was also observed that lipodendriplexes aided downregulation of MDR1 gene effectively, re-sensitized the Caco-2 cells for IM uptake and showed a significantly (p < 0.001) higher apoptosis. Our findings imply that our lipodendriplexes system has a great potential for siRNA delivery, however, further in vivo application using a suitable targeted system can play a major role for better cancer therapeutics.


Assuntos
Apoptose , Resistencia a Medicamentos Antineoplásicos , Células CACO-2 , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Inibidores de Proteínas Quinases , RNA Interferente Pequeno
12.
Eur J Pharm Biopharm ; 150: 50-65, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32151728

RESUMO

5,10,15,20-Tetrakis(3-hydroxyphenyl)chlorin (mTHPC; temoporfin) is one of the most potent second-generation photosensitizers available today for the treatment of a variety of clinical disorders and has a unique capability of being activated at different wavelengths. However, due to its highly lipophilic nature, poor solubility in the aqueous media and poor bioavailability limits its application in anticancer therapies. To overcome these potential issues, we developed three different liposomal formulations with mTHPC encapsulated in hydrophobic milieu thus increasing the bioavailability of the drug. The prepared formulations were characterized in terms of hydrodynamic diameter, surface charge, encapsulation efficiency, and stability studies. The mean size of the liposomes was found to be in the nanoscale range (about 100 nm) with zeta potential ranging from -6.0 to -13.7 mV. mTHPC loaded liposomes were also evaluated for morphology using atomic force microscopy (AFM) and cryo-transmission electron microscopy (cryo-TEM). Data obtained from the hemocompatibility experiments showed that these formulations were compatible with blood showing less than 10% hemolysis and coagulation time lower than 40 s. The results obtained from the single-cell gel electrophoresis assay also demonstrated no incidence of genotoxicity. Photodynamic destruction of SK-OV-3 cells using mTHPC loaded liposomes showed a dose-response relationship upon irradiation with two different wavelength lights (blue λ = 457 nm & red λ = 652 nm). A 10-fold pronounced effect was produced when liposomal formulations were irradiated at 652 nm as compared to 457 nm. This was also evaluated by the quantitative assessment of reactive oxygen production (ROS) using fluorescence microscopy. The qualitative assessment of PDT pre- and post-irradiation was visualized using confocal laser scanning microscopy (CLSM) which demonstrated an intense localization of mTHPC liposomes in the perinuclear region. Chick chorioallantoic membrane assay (CAM) was used as an alternative in-ovo model to demonstrate the localized destruction of tumor microvasculature. Overall, the prepared nanoformulation is a biocompatible, efficient and well characterized delivery system for mTHPC for the safe and effective PDT.


Assuntos
Carcinoma/tratamento farmacológico , Membrana Corioalantoide/irrigação sanguínea , Lipídeos/química , Mesoporfirinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Animais , Carcinoma/patologia , Linhagem Celular Tumoral , Embrião de Galinha , Relação Dose-Resposta a Droga , Composição de Medicamentos , Feminino , Humanos , Lipossomos , Mesoporfirinas/química , Densidade Microvascular/efeitos dos fármacos , Nanopartículas , Neoplasias Ovarianas/patologia , Fármacos Fotossensibilizantes/química , Solubilidade
13.
Int J Pharm ; 575: 118961, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846731

RESUMO

Surface modification of nanoparticles with aptamer is gaining popularity lately due to its selective targeting and low immunogenicity. In this study, sorafenib tosylate (SFB) was loaded in biodegradable PLGA nanoparticles prepared by solvent evaporation method. The surfaces of drug deprived and drug-loaded particles (PN and PNS, respectively) were coupled with aptamer to target ErbB3 using EDC/NHS chemical modification. Nanoparticles were characterized with regard to their size, shape and chemical composition by dynamic light scattering, atomic force microscopy, FTIR and elemental analysis respectively. To evaluate the particles in vitro cell culture studies were performed. Cell viability assay, pathway analysis and apoptosis assay showed cellular toxicity in the presence of aptamer in PNS-Apt (p < 0.001). Metastatic progression assay showed decreased cell migration in the presence of aptamer and SFB. Confocal laser scanning microscopy was used to visualize the receptor-mediated time-dependent intracellular uptake and distribution of the nanoparticles throughout the cytoplasm. The findings of the current study demonstrated the potential efficacy of the surface modified SFB-loaded particles against ErbB3.


Assuntos
Aptâmeros de Nucleotídeos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Receptor ErbB-3/antagonistas & inibidores , Sorafenibe/farmacologia , Apoptose/efeitos dos fármacos , Aptâmeros de Nucleotídeos/administração & dosagem , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sorafenibe/administração & dosagem , Tecnologia Farmacêutica/métodos
14.
Eur J Pharm Biopharm ; 145: 42-53, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31626948

RESUMO

The delivery of aptamer modified therapeutic moieties to specific tissue sites has become one of the major therapeutic choices to reduce the toxicity of inhibitory drugs. Bearing this in mind, the current study was designed using sorafenib (SFB) encapsulated microparticles (MP) prepared with biodegradable poly (D, L-lactic-co-glycolic acid) (PLGA) copolymer. The surfaces of these microparticles were modified with RNA aptamer having a binding affinity towards ErbB3 receptors. SFB-loaded MP (MPS) were prepared by o/w solvent evaporation method and the surface was coupled with the amino group of aptamer by EDC/NHS chemistry. Physiochemical investigations were done by dynamic light scattering, scanning electron microscopy and FTIR. In vitro apoptosis assay, cell viability assay and metastatic progression showed a significant decrease (p < 0.001) in vitro cell viability for MPS and MPS-Apt as compared to MP. The synergistic combination of SFB and aptamer also decreased the metastatic progression of cells for an extended period. Microparticles were also evaluated for in vivo toxicity in female BALB/c mice. It was evident that the presence of aptamer decreased the generalized toxicity of MPS-Apt, as measured by mean body weight loss and blood profiles, keeping all the blood formed elements level within acceptable limits. The histopathological investigations showed some necrotic and pyknotic bodies. In a similar fashion, liver function test and renal function tests showed pronounced effects of formulations on vital organs.


Assuntos
Receptor ErbB-3/antagonistas & inibidores , Sorafenibe/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microesferas , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Polímeros/química , Solventes/química , Sorafenibe/química
15.
Eur J Pharm Biopharm ; 135: 72-82, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30590107

RESUMO

Non-viral vectors are a safe, efficient and non-toxic alternative to viral vectors for gene therapy against many diseases ranging from genetic disorders to cancers. Polyamidoamine (PAMAM), a positively charged dendrimer has a tendency to complex with nucleic acids (to form dendriplexes) like plasmid DNA (pDNA) and small interfering RNA (siRNA) and can shield them from enzymatic degradation, thereby facilitating endocytosis and endosomal release. In this study, we developed an advanced variant of the dendriplexes by encapsulating them within liposomes to enhance their gene delivery efficiency. This liposome encapsulated dendriplex system can further reduce unwanted cytotoxicity and enhance cellular uptake of nucleic acids. A broad range of lipid combinations were used to optimize the lipodendriplexes in terms of their physicochemical characteristics including size, shape and zeta potential. The optimized lipodendriplexes were tested for pDNA transfection, in vitro cell viability, cellular uptake, siRNA mediated knockdown, hemocompatibility, metastatic progression and in ovo in chorioallantoic membrane model (CAM). The optimized system has shown significant improvement in pDNA transfection (p < 0.01) with higher GFP expression and gene silencing and has shown improved cell viability (p < 0.05) compared to the parent dendriplex system. The hemocompatibility and CAM analysis, revealed an efficient yet biocompatible gene delivery system in the form of lipodendriplexes.


Assuntos
Dendrímeros/química , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Animais , Linhagem Celular , Sobrevivência Celular/genética , Galinhas , Membrana Corioalantoide/metabolismo , DNA/administração & dosagem , Técnicas de Silenciamento de Genes , Inativação Gênica , Vetores Genéticos/efeitos adversos , Proteínas de Fluorescência Verde/genética , Humanos , Lipídeos/química , Lipossomos , Nanoestruturas , Plasmídeos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Transfecção
16.
Braz. J. Pharm. Sci. (Online) ; 54(4): e00130, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001570

RESUMO

The present study was aimed at preparation of transdermal patches of tizanidine HCl, evaluation of the effect of polymers on in vitro release pattern of the drug, and the effect of permeation enhancers on the penetration of the drug through the rabbit skin. Various proportions of hydrophilic (HPMC) and hydrophobic (Eudragit L-100) polymers were used with PEG 400 as film-forming agent, and Span 20 or DMSO as permeation enhancer. The formulations were assessed for physicochemical characteristics and in vitro drug release studies using USP paddle over disc method in phosphate buffered saline (pH 7.4) at 32.0±1°C. On the basis of in vitro studies and physicochemical evaluations, S03-A and S04-A were selected at Eudragit : HPMC ratios of 8 : 2 and 7 : 3, respectively, for further ex vivo analysis. The effects of different concentrations of Span 20 and DMSO were evaluated on excised rabbit skin using Franz diffusion cell. Cumulative drug permeation, flux, permeability coefficient, target flux, and enhancement ratio were calculated and compared with the control formulations. Kinetic models and Tukey's multiple comparison test were applied to evaluate the drug release patterns. Formulation SB03-PE containing Eudragit L-100:HPMC (7:3) with Span 20 (15% w/w) produced the highest enhancement in drug permeation, and followed zero order kinetic model with super case-II drug release mechanism.


Assuntos
Animais , Coelhos , Adesivo Transdérmico/classificação , Adesivo Transdérmico/provisão & distribuição , Técnicas In Vitro , Preparações Farmacêuticas/análise , Interações Hidrofóbicas e Hidrofílicas , Liberação Controlada de Fármacos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA